Limit theorems for a class of critical superprocesses with stable branching

Yan-Xia Ren

Peking University

The 14th International Workshop on Markov Processes and Related Topics, Chengdu, July 16-20, 2018

This talk is based on joint works with Renming Song and Zhenyao Sun

Outline

1 Limit results under second moment conditions

- Critical G-W processes
- General critical branching processes
- Critical superprocesses

2 Limit results without second moment conditions

- Critical G-W processes
- Critical continuous-state branching processes

3 Superprocesses with stable branching mechanism

- Introduction of superprocesses
- Main results
- Technique: Size-biased transform of Poisson random measures

Limit results under second moment conditions	Limit results without second moment conditions	Superprocesses with stable branching mechanism Reference

Limit results under second moment conditions

Branching process

- Let *L* be an \mathbb{N}_0 -valued random variable, EL = m, $Var(L) = \sigma^2$.
- Consider a branching particle system such that:
 - There is one particle at generation 0.
 - Each particle in the system independently produces a random number of new particles, according to *L*.
 - The reproduction goes recursively.
- Denote by Z_n the number of particles at generation n, then we say the process $(Z_n)_{n\geq 1}$ is a **Galton-Watson process**.
- It is well known that

$$\lim_{n\to\infty}P(Z_n>0)=P(\forall n \ s.t. \ Z_n>0)=0,$$

iff $m \leq 1$.

Kolmogorov's and Yaglom's results

When the branching process $(Z_n, n \ge 1)$ is **critical**, i.e. m = 1, and $Var(L) = \sigma^2 < \infty$,

• Kolmogorov (1938) proved that

$$nP(Z_n > 0) \xrightarrow[n \to \infty]{} \frac{2}{\sigma^2}$$
(1)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Kolmogorov's and Yaglom's results

When the branching process $(Z_n, n \ge 1)$ is **critical**, i.e. m = 1, and $Var(L) = \sigma^2 < \infty$,

• Kolmogorov (1938) proved that

$$nP(Z_n > 0) \xrightarrow[n \to \infty]{} \frac{2}{\sigma^2}$$
(1)

• Yaglom (1947) proved that

$$\left\{\frac{Z_n}{n}; \quad P(\cdot|Z_n>0)\right\} \xrightarrow[n\to\infty]{law} \frac{\sigma^2}{2}\mathbf{e}, \tag{2}$$

where \mathbf{e} is an exponential random variable with mean 1.

Kolmogorov's and Yaglom's results

When the branching process $(Z_n, n \ge 1)$ is **critical**, i.e. m = 1, and $Var(L) = \sigma^2 < \infty$,

• Kolmogorov (1938) proved that

$$nP(Z_n > 0) \xrightarrow[n \to \infty]{} \frac{2}{\sigma^2}$$
(1)

• Yaglom (1947) proved that

$$\left\{\frac{Z_n}{n}; \quad P(\cdot|Z_n>0)\right\} \xrightarrow[n\to\infty]{law} \frac{\sigma^2}{2}\mathbf{e}, \tag{2}$$

where \mathbf{e} is an exponential random variable with mean 1.

• We will call results like (1) Kolmogorov type results and results like (2) Yaglom type results on more general branching processes.

General critical branching processes (Analytic proofs)

For Kolmogorov type and Yaglom type results on...

• continuous time critical branching processes, see Athreya and Ney (1972)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

General critical branching processes (Analytic proofs)

For Kolmogorov type and Yaglom type results on...

- continuous time critical branching processes, see Athreya and Ney (1972)
- **discrete time multitype** critical branching processes, see Athreya and Ney (1972), and Joffe and Spitzer (1967);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

General critical branching processes (Analytic proofs)

For Kolmogorov type and Yaglom type results on...

- **continuous time** critical branching processes, see Athreya and Ney (1972)
- **discrete time multitype** critical branching processes, see Athreya and Ney (1972), and Joffe and Spitzer (1967);

A D N A 目 N A E N A E N A B N A C N

• **continuous time multitype** critical branching processes, see Athreya and Ney (1974);

General critical branching processes (Analytic proofs)

For Kolmogorov type and Yaglom type results on...

- continuous time critical branching processes, see Athreya and Ney (1972)
- **discrete time multitype** critical branching processes, see Athreya and Ney (1972), and Joffe and Spitzer (1967);
- **continuous time multitype** critical branching processes, see Athreya and Ney (1974);
- critical branching Markov processes, see Asmussen and Hering (1983).

A D N A 目 N A E N A E N A B N A C N

General critical branching processes (Analytic proofs)

For Kolmogorov type and Yaglom type results on...

- continuous time critical branching processes, see Athreya and Ney (1972)
- **discrete time multitype** critical branching processes, see Athreya and Ney (1972), and Joffe and Spitzer (1967);
- **continuous time multitype** critical branching processes, see Athreya and Ney (1974);
- critical branching Markov processes, see Asmussen and Hering (1983).
- critical superprocesses, see Evans and Perkins (1990) and R., Song and Zhang (2015).

General critical branching processes (Probabilistic proofs)

• Kolmogorov's result and Yaglom's result on branching process see Lyons, Pemantle and Peres (1995), Geiger (1999), and R., Song and Sun (2018).

General critical branching processes (Probabilistic proofs)

- Kolmogorov's result and Yaglom's result on branching process see Lyons, Pemantle and Peres (1995), Geiger (1999), and R., Song and Sun (2018).
- Kolmogorov type result on multitype branching processes, see Vatutin and Dyakonova (2001).

General critical branching processes (Probabilistic proofs)

- Kolmogorov's result and Yaglom's result on branching process see Lyons, Pemantle and Peres (1995), Geiger (1999), and R., Song and Sun (2018).
- Kolmogorov type result on multitype branching processes, see Vatutin and Dyakonova (2001).

• Kolmogorov type and Yaglom type results on branching diffusions, see Powell (2015).

General critical branching processes (Probabilistic proofs)

- Kolmogorov's result and Yaglom's result on branching process see Lyons, Pemantle and Peres (1995), Geiger (1999), and R., Song and Sun (2018).
- Kolmogorov type result on multitype branching processes, see Vatutin and Dyakonova (2001).
- Kolmogorov type and Yaglom type results on branching diffusions, see Powell (2015).
- Kolmogorov type and Yaglom type results for a class of critical superprocesses, see R., Song and Sun (2017).

A D N A 目 N A E N A E N A B N A C N

Superprocesses

Superprocesses are measura-valued Markov processes. To define it, we need some preparation:

- E: locally compact separable metric space with a measure m.
- \mathcal{M}_f : the collection of all the finite Borel measures on E.
- (ξ_t) : an *E*-valued Hunt process with transition semigroup (P_t) .
- $\Psi: E \times [0,\infty) \to [0,\infty)$ s.t.

$$\Psi(x,z):=-\beta(x)z+\alpha(x)z^2+\int_{(0,\infty)}(e^{-zy}-1+zy)\pi(x,dy).$$

where

- $\beta \in b\mathcal{B}_{E}$;
- $\alpha \in bp\mathcal{B}_{E}$;
- π : a kernel from E to $(0,\infty)$ s.t. $\sup_{x\in E} \int_{(0,\infty)} (y \wedge y^2) \pi(x, dy) < \infty$.

Limit results under second moment conditions	Limit results without second moment conditions	Superprocesses with stable branching mechanism Reference
00000000	0000	00000000000

(ロ)、(型)、(E)、(E)、 E) の(()

Superprocesses

•
$$\mu(f) := \int_E f(x)\mu(dx), \quad f \in b\mathscr{B}_E, \mu \in \mathcal{M}_f.$$

Limit results under second moment conditions	Limit results without second moment conditions	Superprocesses with stable branching mechanism Reference
00000000	0000	00000000000

Superprocesses

- $\mu(f) := \int_E f(x)\mu(dx), \quad f \in b\mathscr{B}_E, \mu \in \mathcal{M}_f.$
- For any f ∈ bpℬ_E, let u_f : [0,∞) × E → [0,∞) be the unique locally bounded positive solution to the equation

$$u_f(t,x) + \int_0^t P_s \Psi(x, u_f(t-s,x)) ds = P_t f(x).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Limit results under second moment conditions	Limit results without second moment conditions	Superprocesses with stable branching mechanism Reference
00000000	0000	00000000000

Superprocesses

- $\mu(f) := \int_E f(x)\mu(dx), \quad f \in b\mathscr{B}_E, \mu \in \mathcal{M}_f.$
- For any f ∈ bpℬ_E, let u_f : [0,∞) × E → [0,∞) be the unique locally bounded positive solution to the equation

$$u_f(t,x) + \int_0^t P_s \Psi(x, u_f(t-s,x)) ds = P_t f(x).$$

Definition (Superprocesses)

A \mathcal{M}_{f} -valued Markov process $\{(X_{t})_{t\geq 0}; (\mathbf{P}_{\mu})_{\mu\in\mathcal{M}_{f}}\}$ is called to be a (ξ, Ψ) -superprocess if it satisfies that

$$\mathbf{P}_{\mu}[e^{-X_t(f)}] = e^{-\mu(u_f(t,\cdot))}, \quad t \ge 0, \mu \in \mathcal{M}_f, f \in bp\mathscr{B}_E.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Criticality of Superprocesses

• $(S_t)_{t\geq 0}$: mean semigroup of superprocess (X_t) defined by

 $S_t f(x) := \mathbf{P}_{\delta_x}[X_t(f)] \quad t \ge 0, x \in E, f \in b\mathscr{B}_E.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Criticality of Superprocesses

• $(S_t)_{t\geq 0}$: mean semigroup of superprocess (X_t) defined by

$$S_t f(x) := \mathbf{P}_{\delta_x}[X_t(f)] \quad t \ge 0, x \in E, f \in b\mathscr{B}_E.$$

• Under some regularity assumption on the underlying process ξ , the mean semigroup (S_t) and its adjoint semigroup (S_t^*) are both strongly continuous semigroups of compact operators in $L^2(E, m)$ with generators denoted by \mathcal{L} and \mathcal{L}^* , respectively.

Criticality of Superprocesses

• $(S_t)_{t\geq 0}$: mean semigroup of superprocess (X_t) defined by

$$S_t f(x) := \mathbf{P}_{\delta_x}[X_t(f)] \quad t \ge 0, x \in E, f \in b\mathscr{B}_E.$$

• Under some regularity assumption on the underlying process ξ , the mean semigroup (S_t) and its adjoint semigroup (S_t^*) are both strongly continuous semigroups of compact operators in $L^2(E, m)$ with generators denoted by \mathcal{L} and \mathcal{L}^* , respectively.

• λ : the common maximum eigenvalue of \mathcal{L} and \mathcal{L}^* .

Criticality of Superprocesses

• $(S_t)_{t\geq 0}$: mean semigroup of superprocess (X_t) defined by

$$S_t f(x) := \mathbf{P}_{\delta_x}[X_t(f)] \quad t \ge 0, x \in E, f \in b\mathscr{B}_E.$$

A D N A 目 N A E N A E N A B N A C N

- Under some regularity assumption on the underlying process ξ , the mean semigroup (S_t) and its adjoint semigroup (S_t^*) are both strongly continuous semigroups of compact operators in $L^2(E, m)$ with generators denoted by \mathcal{L} and \mathcal{L}^* , respectively.
- λ : the common maximum eigenvalue of \mathcal{L} and \mathcal{L}^* .
- ϕ and ϕ^* : the eigenfunction of \mathcal{L} and \mathcal{L}^* associated with the eigenvalue λ , normalized s.t. $\langle \phi, \phi \rangle_m = \langle \phi, \phi^* \rangle_m = 1$.

Criticality of Superprocesses

• $(S_t)_{t\geq 0}$: mean semigroup of superprocess (X_t) defined by

$$S_t f(x) := \mathbf{P}_{\delta_x}[X_t(f)] \quad t \ge 0, x \in E, f \in b\mathscr{B}_E.$$

- Under some regularity assumption on the underlying process ξ , the mean semigroup (S_t) and its adjoint semigroup (S_t^*) are both strongly continuous semigroups of compact operators in $L^2(E, m)$ with generators denoted by \mathcal{L} and \mathcal{L}^* , respectively.
- λ : the common maximum eigenvalue of \mathcal{L} and \mathcal{L}^* .
- ϕ and ϕ^* : the eigenfunction of \mathcal{L} and \mathcal{L}^* associated with the eigenvalue λ , normalized s.t. $\langle \phi, \phi \rangle_m = \langle \phi, \phi^* \rangle_m = 1$.
- It is known that $(e^{-\lambda t}X_t(\phi))_{t\geq 0}$ is a nonnegative martingale.

Criticality of Superprocesses

• $(S_t)_{t\geq 0}$: mean semigroup of superprocess (X_t) defined by

$$S_t f(x) := \mathbf{P}_{\delta_x}[X_t(f)] \quad t \ge 0, x \in E, f \in b\mathscr{B}_E.$$

- Under some regularity assumption on the underlying process ξ , the mean semigroup (S_t) and its adjoint semigroup (S_t^*) are both strongly continuous semigroups of compact operators in $L^2(E, m)$ with generators denoted by \mathcal{L} and \mathcal{L}^* , respectively.
- λ : the common maximum eigenvalue of \mathcal{L} and \mathcal{L}^* .
- ϕ and ϕ^* : the eigenfunction of \mathcal{L} and \mathcal{L}^* associated with the eigenvalue λ , normalized s.t. $\langle \phi, \phi \rangle_m = \langle \phi, \phi^* \rangle_m = 1$.
- It is known that $(e^{-\lambda t}X_t(\phi))_{t\geq 0}$ is a nonnegative martingale.
- When $\lambda = 0$ (> 0, < 0), we say the process is (super, sub) critical.

Limit results on critical superprocesses

۰

Now let us consider critical superprocess (X_t) . Under some other conditions, it was proved by R., Song and Zhang (2015), and R., Song and Sun (2017) that

$$t\mathbf{P}_{\mu}(X_t \neq \mathbf{0}) \xrightarrow[t \to \infty]{} c_0^{-1}\mu(\phi),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Limit results on critical superprocesses

Now let us consider critical superprocess (X_t) . Under some other conditions, it was proved by R., Song and Zhang (2015), and R., Song and Sun (2017) that

$$t\mathbf{P}_{\mu}(X_t \neq \mathbf{0}) \xrightarrow[t \to \infty]{t \to \infty} c_0^{-1}\mu(\phi),$$

• and for a large class of functions f on E,

۰

$$\left\{rac{X_t(f)}{t}; \mathbf{P}_{\mu}(\cdot|X_t
eq \mathbf{0})
ight\} \xrightarrow[t o \infty]{law} c_0 \langle \phi^*, f
angle_m \mathbf{e}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Limit results on critical superprocesses

Now let us consider critical superprocess (X_t) . Under some other conditions, it was proved by R., Song and Zhang (2015), and R., Song and Sun (2017) that

$$t\mathbf{P}_{\mu}(X_t \neq \mathbf{0}) \xrightarrow[t \to \infty]{t \to \infty} c_0^{-1}\mu(\phi),$$

• and for a large class of functions f on E,

۲

$$\left\{rac{X_t(f)}{t}; \mathbf{P}_{\mu}(\cdot|X_t
eq \mathbf{0})
ight\} rac{\mathit{law}}{t o \infty} c_0 \langle \phi^*, f
angle_m \mathbf{e}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Here, the constant $c_0 > 0$ is independent of the choice of μ and f.

Limit results under second moment conditions	Limit results without second moment conditions	Superprocesses with stable branching mechanism Reference

Limit results without second moment conditions

Galton-Watson process

Suppose $(Z_n)_{n\geq 1}$ is a Galton-Watson process. $Var(L) = \sigma^2 = \infty$

• Zolotarev (1957) and Slack (1968): Assume that the generating function f(s) of the offspring distribution is of the form

$$f(s) = s + (1-s)^{1+\alpha} l(1-s), \quad s \ge 0,$$
 (3)

where $\alpha \in (0, 1]$ and *I* is a function slowly varying at 0. Then

Galton-Watson process

۲

Suppose $(Z_n)_{n\geq 1}$ is a Galton-Watson process. Var $(L) = \sigma^2 = \infty$

• Zolotarev (1957) and Slack (1968): Assume that the generating function f(s) of the offspring distribution is of the form

$$f(s) = s + (1-s)^{1+\alpha} I(1-s), \quad s \ge 0,$$
 (3)

where $\alpha \in (0,1]$ and I is a function slowly varying at 0. Then

$$P(Z_n > 0) = n^{-1/\alpha} L(n),$$
 (4)

where L is a function slowly varying at ∞ , and

Galton-Watson process

Suppose $(Z_n)_{n\geq 1}$ is a Galton-Watson process. Var $(L) = \sigma^2 = \infty$

• Zolotarev (1957) and Slack (1968): Assume that the generating function f(s) of the offspring distribution is of the form

$$f(s) = s + (1-s)^{1+\alpha} l(1-s), \quad s \ge 0,$$
 (3)

where $\alpha \in (0,1]$ and / is a function slowly varying at 0. Then

$$P(Z_n > 0) = n^{-1/\alpha} L(n),$$
 (4)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where L is a function slowly varying at ∞ , and

۲

$$\left\{P(Z_n>0)Z_n; P(\cdot|Z_n>0)\right\} \xrightarrow[n\to\infty]{\text{law}} \mathbf{z}^{(\alpha)}, \tag{5}$$

where $\mathbf{z}^{(\alpha)}$ is a positive random variable with Laplace transform

$$E[e^{-uz^{(\alpha)}}] = 1 - (1 + u^{-\alpha})^{-1/\alpha}, \quad u \ge 0.$$
(6)

Galton-Watson process

 Slack (1972) considered the converse of this problem: In order for {P(Z_n > 0)Z_n; P(·|Z_n > 0)} to have a non-degenerate weak limit, the generating function of the offspring distribution must be of the form of (3) for some 0 < α ≤ 1.

Galton-Watson process

- Slack (1972) considered the converse of this problem: In order for $\{P(Z_n > 0)Z_n; P(\cdot|Z_n > 0)\}$ to have a non-degenerate weak limit, the generating function of the offspring distribution must be of the form of (3) for some $0 < \alpha \le 1$.
- For shorter and more unified approaches to these results, we refer our readers to Borovkov (1989) and Pakes (2010).

More general critical branching processes

• Goldstein and Hoppe (1978) considered the asymptotic behavior of **discrete time multitype critical** Galton-Watson processes without the 2nd moment condition.
More general critical branching processes

• Goldstein and Hoppe (1978) considered the asymptotic behavior of **discrete time multitype critical** Galton-Watson processes without the 2nd moment condition.

• Vatutin (1977) considered analogous results for the **continuous time multitype critical** Galton-Watson processes.

More general critical branching processes

- Goldstein and Hoppe (1978) considered the asymptotic behavior of **discrete time multitype critical** Galton-Watson processes without the 2nd moment condition.
- Vatutin (1977) considered analogous results for the **continuous time multitype critical** Galton-Watson processes.
- Asmussen and Hering (1983) discussed similar questions for critical branching Markov processes (Y_t) in a general space E under some ergodicity condition (the so-called condition (S) on the mean semigroup of (Y_t)).

More general critical branching processes

- Goldstein and Hoppe (1978) considered the asymptotic behavior of **discrete time multitype critical** Galton-Watson processes without the 2nd moment condition.
- Vatutin (1977) considered analogous results for the **continuous time multitype critical** Galton-Watson processes.
- Asmussen and Hering (1983) discussed similar questions for critical branching Markov processes (Y_t) in a general space E under some ergodicity condition (the so-called condition (S) on the mean semigroup of (Y_t)).

• It is natural to ask whether similar results are still valid for some critical superprocesses without the second moment condition.

Continuous-state branching processes(CSBPs)

Kyprianou and Pardo (2008) considered CSBPs {(Y_t)_{t≥0}; P} with stable branching mechanism ψ(z) = cz^γ where c > 0 and γ ∈ (1,2]. For all x > 0, with c_t := (c(γ − 1)t)^{1/(γ−1)},

$$\{c_t^{-1}Y_t; P(\cdot|Y_t > 0, Y_0 = x)\} \xrightarrow[t \to \infty]{law} \mathbf{z}^{(\gamma-1)}.$$
(7)

Continuous-state branching processes(CSBPs)

Kyprianou and Pardo (2008) considered CSBPs {(Y_t)_{t≥0}; P} with stable branching mechanism ψ(z) = cz^γ where c > 0 and γ ∈ (1,2]. For all x > 0, with c_t := (c(γ − 1)t)^{1/(γ−1)},

$$\{c_t^{-1}Y_t; \mathcal{P}(\cdot|Y_t > 0, Y_0 = x)\} \xrightarrow[t \to \infty]{\text{law}} \mathbf{z}^{(\gamma-1)}.$$
 (7)

• R., Yang and Zhao (2014) studied CSBPs with branching mechanism $\psi(z) = cz^2 I(z), \quad z \ge 0,$ (8)

where c > 0, $\gamma \in (1, 2]$ and l is a function slowly varying at 0. For all x > 0, with $\lambda_t := P_1(Y_t > 0)$,

$$\{\lambda_t Y_t; P(\cdot|Y_t > 0, Y_0 = x)\} \xrightarrow[t \to \infty]{law} \mathbf{z}^{(\gamma - 1)}.$$
 (9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Continuous-state branching processes(CSBPs)

Kyprianou and Pardo (2008) considered CSBPs {(Y_t)_{t≥0}; P} with stable branching mechanism ψ(z) = cz^γ where c > 0 and γ ∈ (1,2]. For all x > 0, with c_t := (c(γ − 1)t)^{1/(γ−1)},

$$\{c_t^{-1}Y_t; \mathcal{P}(\cdot|Y_t > 0, Y_0 = x)\} \xrightarrow[t \to \infty]{\text{law}} \mathbf{z}^{(\gamma - 1)}.$$
(7)

• R., Yang and Zhao (2014) studied CSBPs with branching mechanism $\psi(z)=cz^2 l(z), \quad z\geq 0,$ (8)

where c > 0, $\gamma \in (1, 2]$ and l is a function slowly varying at 0. For all x > 0, with $\lambda_t := P_1(Y_t > 0)$,

$$\{\lambda_t Y_t; P(\cdot|Y_t > 0, Y_0 = x)\} \xrightarrow[t \to \infty]{law} \mathsf{z}^{(\gamma - 1)}.$$
(9)

• Z. Li (2000) and A. Lambert (2007) studied the case that $\gamma=2.$

Continuous-state branching processes(CSBPs)

Kyprianou and Pardo (2008) considered CSBPs {(Y_t)_{t≥0}; P} with stable branching mechanism ψ(z) = cz^γ where c > 0 and γ ∈ (1,2]. For all x > 0, with c_t := (c(γ − 1)t)^{1/(γ−1)},

$$\{c_t^{-1}Y_t; \mathcal{P}(\cdot|Y_t > 0, Y_0 = x)\} \xrightarrow[t \to \infty]{\text{law}} \mathbf{z}^{(\gamma-1)}.$$
(7)

• R., Yang and Zhao (2014) studied CSBPs with branching mechanism

$$\psi(z) = cz^2 l(z), \quad z \ge 0, \tag{8}$$

where c > 0, $\gamma \in (1, 2]$ and l is a function slowly varying at 0. For all x > 0, with $\lambda_t := P_1(Y_t > 0)$,

$$\{\lambda_t Y_t; P(\cdot|Y_t > 0, Y_0 = x)\} \xrightarrow[t \to \infty]{law} \mathbf{z}^{(\gamma - 1)}.$$
(9)

Z. Li (2000) and A. Lambert (2007) studied the case that γ = 2.
Iyer, Leger and Pego (2015) considered the converse problem: Suppose the branching mechanism ψ satisfies Grey's condition. In order for the left side of (9) to have a non-trivial weak limit for some positive constants (λ_t)_{t≥0}, one must have (8) for some 1 < γ ≤ 2.

Limit results under second moment conditions	Limit results without second moment conditions	Superprocesses with stable branching mechanism Reference
		• 00 000000000

Superprocesses with stable branching mechanism

(ロ)、(型)、(E)、(E)、 E) の(()

Settings

- E: locally compact separable metric space.
- \mathcal{M}_f : the collection of all the finite Borel measures on E.
- Spatial motion (ξ_t): an *E*-valued Hunt process with transition semigroup (P_t) and lifetime ζ.

Settings

- E: locally compact separable metric space.
- \mathcal{M}_f : the collection of all the finite Borel measures on E.
- Spatial motion (ξ_t): an *E*-valued Hunt process with transition semigroup (P_t) and lifetime ζ.
- Branching mechanism

$$\psi(x,z) = -\beta(x)z + \kappa(x)z^{\gamma(x)}, \quad x \in E, z \ge 0,$$
 (10)

A D N A 目 N A E N A E N A B N A C N

where $\beta \in \mathscr{B}_b(E)$, $\gamma \in \mathscr{B}_b^+(E)$, $\kappa \in \mathscr{B}_b^+(E)$ with $1 < \gamma(\cdot) < 2$, $\gamma_0 := \operatorname{ess\,inf}_{m(dx)} \gamma(x) > 1$ and $\operatorname{ess\,inf}_{m(dx)} \kappa(x) > 0$.

Settings

- E: locally compact separable metric space.
- \mathcal{M}_f : the collection of all the finite Borel measures on E.
- Spatial motion (ξ_t): an *E*-valued Hunt process with transition semigroup (P_t) and lifetime ζ.
- Branching mechanism

$$\psi(x,z) = -\beta(x)z + \kappa(x)z^{\gamma(x)}, \quad x \in E, z \ge 0,$$
(10)

where $\beta \in \mathscr{B}_b(E)$, $\gamma \in \mathscr{B}_b^+(E)$, $\kappa \in \mathscr{B}_b^+(E)$ with $1 < \gamma(\cdot) < 2$, $\gamma_0 := \operatorname{ess\,inf}_{m(dx)} \gamma(x) > 1$ and $\operatorname{ess\,inf}_{m(dx)} \kappa(x) > 0$.

 (X_t)_{t≥0}: a superprocess with spatial motion ξ and branching mechanism Ψ.

Superprocesses

For any f ∈ bpℬ_E, let u_f : [0,∞) × E → [0,∞) be the unique locally bounded positive solution to the equation

$$u_f(t,x) + \int_0^t P_s \Psi(x, u_f(t-s,x)) ds = P_t f(x).$$

Definition (Superprocesses)

A \mathcal{M}_{f} -valued Markov process $\{(X_{t})_{t\geq 0}; (\mathbf{P}_{\mu})_{\mu\in\mathcal{M}_{f}}\}$ is called to be a (ξ, Ψ) -superprocess if it satisfies that

$$\mathbf{P}_{\mu}[e^{-X_t(f)}] = e^{-\mu(u_f(t,\cdot))}, \quad t \ge 0, \mu \in \mathcal{M}_f, f \in bp\mathscr{B}_E.$$

Superprocesses

For any f ∈ bpℬ_E, let u_f : [0,∞) × E → [0,∞) be the unique locally bounded positive solution to the equation

$$u_f(t,x) + \int_0^t P_s \Psi(x, u_f(t-s,x)) ds = P_t f(x).$$

Definition (Superprocesses)

A \mathcal{M}_{f} -valued Markov process $\{(X_{t})_{t\geq 0}; (\mathbf{P}_{\mu})_{\mu\in\mathcal{M}_{f}}\}$ is called to be a (ξ, Ψ) -superprocess if it satisfies that

$$\mathbf{P}_{\mu}[e^{-X_t(f)}] = e^{-\mu(u_f(t,\cdot))}, \quad t \ge 0, \mu \in \mathcal{M}_f, f \in bp\mathscr{B}_E.$$

• If $E = \{x_0\}$ then $Z_t := X_t(1)$ is simply a CSBP.

Assumptions

• The mean behavior of superprocess can be described by the Feynman-Kac transform of (*P*_t):

$$\mathbf{P}_{\delta_{x}}[X_{t}(f)] = P_{t}^{\beta}f(x) := \prod_{x} [e^{\int_{0}^{t} \beta(\xi_{r})dr} f(\xi_{t})\mathbf{1}_{t<\zeta}],$$

for $x \in E, t \ge 0, f \in b\mathscr{B}_E$.

Assumption 1. (Compact operators)

There exist a σ -finite Borel measure m with full support on E and a family of strictly positive, bounded continuous functions $\{p_t(\cdot, \cdot) : t > 0\}$ on $E \times E$ such that,

- $P_t f(x) = \int_E p_t(x, y) f(y) m(dy), \quad t > 0, x \in E, f \in b\mathscr{B}_E,$
- $\int_E p_t(y,x)m(dy) \leq 1$, $t > 0, x \in E$,
- $\int_E \int_E p_t(x,y)^2 m(dx) m(dy) < \infty$, t > 0.
- $x \mapsto \int_E p_t(x, y)^2 m(dy)$ and $x \mapsto \int_E p_t(y, x)^2 m(dy)$ are both continuous on E.

Assumptions

- (P^β_t)_{t≥0} and its disjoint semigroup (P^{β*}_t)_{t≥0} are both strongly continuous semigroups of compact operators in L²(E, m).
- L and L^{*}: the generators of $(P_t^{\beta})_{t\geq 0}$ and $(P_t^{\beta*})_{t\geq 0}$, respectively.
- λ := sup Re(σ(L)) = sup Re(σ(L*)), a common eigenvalue of multiplicity 1.
- ϕ and ϕ^* : the eigenfunction of L and L^* associated with the eigenvalue λ .
- Normalize ϕ and ϕ^* by $\langle \phi, \phi \rangle_m = \langle \phi, \phi^* \rangle_m = 1$.

Assumption 2. (Critical and Intrinsic Ultracontractive)

• $\lambda = 0$. (Critical)

•
$$\forall t > 0, \exists c_t > 0, \forall x, y \in E, \quad p_t^{\beta}(x, y) \leq c_t \phi(x) \phi^*(y).$$

(Intrinsic Ultracontractive)

Main results

Theorem

Suppose that $\{(X_t)_{t\geq 0}; (\mathbf{P}_{\mu})_{\mu\in\mathcal{M}_f}\}$ is a (ξ, ψ) -superprocess satisfying Assumptions 1-2. Then,

(1) For each t > 0 and $x \in E$, $\mathbf{P}_{\delta_x}(||X_t|| = 0) > 0$.

Main results

Theorem

Suppose that $\{(X_t)_{t\geq 0}; (\mathbf{P}_{\mu})_{\mu\in\mathcal{M}_f}\}$ is a (ξ, ψ) -superprocess satisfying Assumptions 1-2. Then,

(1) For each t > 0 and $x \in E$, $\mathbf{P}_{\delta_x}(||X_t|| = 0) > 0$.

(2) For each μ ∈ M¹_E, P_μ(||X_t|| ≠ 0) converges to 0 as t → ∞ and is regularly varying at infinity with index −(γ₀ − 1)⁻¹. Furthermore, if m(x : γ(x) = γ₀) > 0, then

$$\lim_{t \to \infty} \eta_t \mathbf{P}_{\mu}(\|X_t\| \neq 0) = \mu(\phi).$$
(11)

Here, $\eta_t := \left(C_X(\gamma_0 - 1)t \right)^{\frac{1}{\gamma_0 - 1}}$, $C_X := \langle \mathbf{1}_{\gamma(\cdot) = \gamma_0} \kappa \phi^{\gamma_0}, \phi^* \rangle_m$.

Main results

Theorem

Suppose that $\{(X_t)_{t\geq 0}; (\mathbf{P}_{\mu})_{\mu\in\mathcal{M}_f}\}$ is a (ξ, ψ) -superprocess satisfying Assumptions 1-2. Then,

(1) For each t > 0 and $x \in E$, $\mathbf{P}_{\delta_x}(||X_t|| = 0) > 0$.

(2) For each μ ∈ M¹_E, P_μ(||X_t|| ≠ 0) converges to 0 as t → ∞ and is regularly varying at infinity with index −(γ₀ − 1)⁻¹. Furthermore, if m(x : γ(x) = γ₀) > 0, then

$$\lim_{t \to \infty} \eta_t \mathbf{P}_{\mu}(\|X_t\| \neq 0) = \mu(\phi).$$
(11)

Here, $\eta_t := (C_X(\gamma_0 - 1)t)^{\frac{1}{\gamma_0 - 1}}$, $C_X := \langle \mathbf{1}_{\gamma(\cdot) = \gamma_0} \kappa \phi^{\gamma_0}, \phi^* \rangle_m$. (3) Suppose $m(x : \gamma(x) = \gamma_0) > 0$. Let $f \in \mathscr{B}^+(E)$ be such that $\langle f, \phi^* \rangle_m > 0$ and $\|\phi^{-1}f\|_{\infty} < \infty$. Then for each $\mu \in \mathcal{M}_E^1$,

$$\{\eta_t^{-1}X_t(f); \mathbf{P}_{\mu}(\cdot|\|X_t\|\neq 0)\} \xrightarrow[t\to\infty]{\text{law}} \langle f, \phi^* \rangle_m \mathbf{z}^{(\gamma_0-1)}.$$
(12)

Size-biased transformation

• Let (Ω, \mathscr{F}) be a measurable space with a σ -finite measure ν . For any $0 \leq F \in \mathscr{F}$ such that $\nu(F) \in (0, \infty)$, we define the *F*-transform of ν as the probability ν^F on (Ω, \mathscr{F}) such that

$$d\nu^F = \frac{F}{\nu(F)}d\nu.$$
 (13)

Size-biased transformation

• Let (Ω, \mathscr{F}) be a measurable space with a σ -finite measure ν . For any $0 \leq F \in \mathscr{F}$ such that $\nu(F) \in (0, \infty)$, we define the *F*-transform of ν as the probability ν^F on (Ω, \mathscr{F}) such that

$$d\nu^{F} = \frac{F}{\nu(F)}d\nu.$$
 (13)

• Suppose (Ω, \mathscr{F}, P) is a probability space.

Size-biased transformation

 Let (Ω, ℱ) be a measurable space with a σ-finite measure ν. For any 0 ≤ F ∈ ℱ such that ν(F) ∈ (0,∞), we define the F-transform of ν as the probability ν^F on (Ω, ℱ) such that

$$d\nu^F = \frac{F}{\nu(F)}d\nu.$$
 (13)

- Suppose (Ω, \mathscr{F}, P) is a probability space.
 - Let X be a random variable defined on it. A random variable {X; P} is called a F-transform of X if {X; P} ^{law} {X; P^F}.

Size-biased transformation

 Let (Ω, 𝔅) be a measurable space with a σ-finite measure ν. For any 0 ≤ F ∈ 𝔅 such that ν(F) ∈ (0,∞), we define the F-transform of ν as the probability ν^F on (Ω, 𝔅) such that

$$d\nu^F = \frac{F}{\nu(F)}d\nu.$$
 (13)

Suppose (Ω, F, P) is a probability space.

- Let X be a random variable defined on it. A random variable $\{X; P\}$ is called a F-transform of X if $\{X; P\} \stackrel{law}{=} \{X; P^F\}$.
- Let {(X_t)_{t∈Γ}; P} be a stochastic process. A process {(X_t)_{t∈Γ}; P} is called a F-transform of process (X_t) if {(X_t)_{t∈Γ}; P} ^{f.d.d.} {(X_t)_{t∈Γ}; P^F}.

Size-biased transform of Poisson random measures

- \mathcal{N} : a Poisson random measure on a measurable space (S, \mathscr{S}) with intensity measure N.
- $F \in \mathscr{S}^+$: $0 < N(F) < \infty$ (, which implies that $P(\mathcal{N}(F)) < \infty$).

Theorem (R., Song and Sun (2017))

 $\{\mathcal{N}; \mathcal{P}^{\mathcal{N}(F)}\} \stackrel{d}{=} \{\mathcal{N} + \delta_s; \mathcal{P} \otimes \mathcal{N}^F(ds)\}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Superprocesses as PRMs

- \mathcal{W} : Skorokhod space of \mathcal{M}_f -valued càdlèg paths.
- (ℕ_x)_{x∈E}: Kuznetsov measure (N-measure, excursion measure) of superprocess (X_t).
- $\mu \in \mathcal{M}_f$.
- \mathcal{N}_{μ} : a Poisson random measure on $\mathcal W$ with intensity measure

$$\int_E \mathbb{N}_{\mathsf{x}}[\,\cdot\,]\mu(d\mathsf{x}).$$

Theorem (Superprocesses as PRMs, see Li (2011) Theorem 8.24)

$$\{(X_t)_{t>0}; \mathbf{P}_{\mu}\} \stackrel{d}{=} \left(\int_{\mathcal{W}} w_t \,\mathcal{N}_{\mu}(dw)\right)_{t>0},$$

here $(w_t)_{t\geq 0}$ is the coordinate process.

Limit results under second moment conditions	Limit results without second moment conditions	Superprocesses with stable branching mechanism Reference
0000000	0000	0000000000000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Size-biased transforms of superprocesses

• F: a non-negative measurable function on $\mathcal W$ s.t. $\mathbb N_{\mu}[F] \in (0,\infty)$.

Theorem (R., Song and Sun (2017) [18])

$$\{(X_t)_{t\geq 0}; \mathbf{P}^{\mathcal{N}(F)}_{\mu}\} \stackrel{d}{=} \{(X_t + w_t)_{t\geq 0}; \mathbf{P}_{\mu} \otimes \mathbb{N}^{F}_{\mu}(dw)\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Size-biased transforms of superprocesses

• F: a non-negative measurable function on $\mathcal W$ s.t. $\mathbb N_\mu[F] \in (0,\infty)$.

Theorem (R., Song and Sun (2017) [18])

 $\{(X_t)_{t\geq 0}; \mathbf{P}^{\mathcal{N}(F)}_{\mu}\} \stackrel{d}{=} \{(X_t + w_t)_{t\geq 0}; \mathbf{P}_{\mu} \otimes \mathbb{N}^{F}_{\mu}(dw)\}.$

• While considering the transform of superprocesses, we only have to characterize the corresponding transform of the ℕ-measures.

Size-biased transforms of superprocesses

• F: a non-negative measurable function on $\mathcal W$ s.t. $\mathbb N_\mu[F] \in (0,\infty)$.

Theorem (R., Song and Sun (2017) [18])

 $\{(X_t)_{t\geq 0}; \mathbf{P}^{\mathcal{N}(F)}_{\mu}\} \stackrel{d}{=} \{(X_t + w_t)_{t\geq 0}; \mathbf{P}_{\mu} \otimes \mathbb{N}^{F}_{\mu}(dw)\}.$

• While considering the transform of superprocesses, we only have to characterize the corresponding transform of the ℕ-measures.

• We can characterize $\{(w_t)_{t\geq 0}; \mathbb{N}^F_{\mu}(dw)\}$ while

Size-biased transforms of superprocesses

F: a non-negative measurable function on W s.t. N_µ[F] ∈ (0,∞).

Theorem (R., Song and Sun (2017) [18])

 $\{(X_t)_{t\geq 0}; \mathbf{P}^{\mathcal{N}(F)}_{\mu}\} \stackrel{d}{=} \{(X_t + w_t)_{t\geq 0}; \mathbf{P}_{\mu} \otimes \mathbb{N}^{F}_{\mu}(dw)\}.$

• While considering the transform of superprocesses, we only have to characterize the corresponding transform of the ℕ-measures.

- We can characterize $\{(w_t)_{t\geq 0}; \mathbb{N}^F_{\mu}(dw)\}$ while
 - $F(w) = w_t(\phi)$ using the 1-Spine Decomposition Theorem.

Size-biased transforms of superprocesses

• F: a non-negative measurable function on $\mathcal W$ s.t. $\mathbb N_\mu[F] \in (0,\infty)$.

Theorem (R., Song and Sun (2017) [18])

 $\{(X_t)_{t\geq 0}; \mathbf{P}^{\mathcal{N}(F)}_{\mu}\} \stackrel{d}{=} \{(X_t + w_t)_{t\geq 0}; \mathbf{P}_{\mu} \otimes \mathbb{N}^{F}_{\mu}(dw)\}.$

- While considering the transform of superprocesses, we only have to characterize the corresponding transform of the ℕ-measures.
- We can characterize $\{(w_t)_{t\geq 0}; \mathbb{N}^F_{\mu}(dw)\}$ while
 - $F(w) = w_t(\phi)$ using the 1-Spine Decomposition Theorem.
 - $F(w) = w_t(f)$ using a generalized 1-Spine Decomposition Theorem.

Size-biased transforms of superprocesses

• F: a non-negative measurable function on $\mathcal W$ s.t. $\mathbb N_\mu[F] \in (0,\infty)$.

Theorem (R., Song and Sun (2017) [18])

 $\{(X_t)_{t\geq 0}; \mathbf{P}^{\mathcal{N}(F)}_{\mu}\} \stackrel{d}{=} \{(X_t + w_t)_{t\geq 0}; \mathbf{P}_{\mu} \otimes \mathbb{N}^{F}_{\mu}(dw)\}.$

- While considering the transform of superprocesses, we only have to characterize the corresponding transform of the ℕ-measures.
- We can characterize $\{(w_t)_{t\geq 0}; \mathbb{N}^F_{\mu}(dw)\}$ while
 - $F(w) = w_t(\phi)$ using the 1-Spine Decomposition Theorem.
 - $F(w) = w_t(f)$ using a generalized 1-Spine Decomposition Theorem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $F(w) = w_t(\phi)^2$ using a 2-Spine Decomposition Theorem.

•

1-spine decomposition, $F(w) := w_T(g)$

Let $g \in p\mathscr{B}_E$ s.t. $\|\phi^{-1}g\|_{\infty} < \infty$. Let $\mu \in \mathcal{M}_f$ s.t $\mu(\phi) < \infty$. Let T > 0. We can constract a \mathcal{M}_f -valued process $\{(Y_t)_{0 \le t \le T}; \ddot{\mathsf{P}}_{\mu}^{(T,g)}\}$ which is a realization of $w_T(g)$ -transform of \mathbb{N}_x :

1-spine decomposition, $F(w) := w_T(g)$

Let $g \in p\mathscr{B}_E$ s.t. $\|\phi^{-1}g\|_{\infty} < \infty$. Let $\mu \in \mathcal{M}_f$ s.t $\mu(\phi) < \infty$. Let T > 0. We can constract a \mathcal{M}_f -valued process $\{(Y_t)_{0 \le t \le T}; \ddot{\mathbf{P}}_{\mu}^{(T,g)}\}$ which is a realization of $w_T(g)$ -transform of \mathbb{N}_x :

• Let the spine process $\{\xi; \dot{\mathbf{P}}_{x}^{(\mathcal{T},g)}\}$ be a $(g(\xi_{\mathcal{T}})e^{\int_{0}^{t} \beta(\xi_{s})ds})$ -transform of $\{\xi; \mathbb{P}_{x}\}$.

1-spine decomposition, $F(w) := w_T(g)$

Let $g \in p\mathscr{B}_E$ s.t. $\|\phi^{-1}g\|_{\infty} < \infty$. Let $\mu \in \mathcal{M}_f$ s.t $\mu(\phi) < \infty$. Let T > 0. We can constract a \mathcal{M}_f -valued process $\{(Y_t)_{0 \le t \le T}; \ddot{\mathbf{P}}_{\mu}^{(T,g)}\}$ which is a realization of $w_T(g)$ -transform of \mathbb{N}_x :

- Let the spine process $\{\xi; \dot{\mathbf{P}}_{x}^{(\mathcal{T},g)}\}$ be a $(g(\xi_{\mathcal{T}})e^{\int_{0}^{t} \beta(\xi_{s})ds})$ -transform of $\{\xi; \mathbb{P}_{x}\}$.
- Conditioned on ξ, let {n; P_x^(T,g)} be a Poisson random measure on (0, T] × W with mean measure

$$2\alpha(\xi_s)ds imes \mathbb{N}_{\xi_s}(dw) + ds imes \int_{(0,\infty)} y \mathbf{P}_{y\delta_{\xi_s}}(dw)\pi(\xi_s,dy).$$

1-spine decomposition, $F(w) := w_T(g)$

Let $g \in p\mathscr{B}_E$ s.t. $\|\phi^{-1}g\|_{\infty} < \infty$. Let $\mu \in \mathcal{M}_f$ s.t $\mu(\phi) < \infty$. Let T > 0. We can constract a \mathcal{M}_f -valued process $\{(Y_t)_{0 \le t \le T}; \ddot{\mathsf{P}}_{\mu}^{(T,g)}\}$ which is a realization of $w_T(g)$ -transform of \mathbb{N}_x :

- Let the spine process $\{\xi; \dot{\mathbf{P}}_{x}^{(\mathcal{T},g)}\}$ be a $(g(\xi_{\mathcal{T}})e^{\int_{0}^{\mathcal{T}}\beta(\xi_{s})ds})$ -transform of $\{\xi; \mathbb{P}_{x}\}$.
- Conditioned on ξ, let {n; P_x^(T,g)} be a Poisson random measure on (0, T] × W with mean measure

$$2\alpha(\xi_s)ds \times \mathbb{N}_{\xi_s}(dw) + ds \times \int_{(0,\infty)} y \mathbf{P}_{y\delta_{\xi_s}}(dw)\pi(\xi_s,dy).$$

The immigration along the spine {Y; P_x^(T,g)} is an M_f-valued process defined by

$$Y_t(\cdot) := \int_{(0,t] \times \mathcal{W}} w_{t-s}(\cdot) \mathbf{n}(ds, dw), \quad t \ge 0.$$

1-spine decomposition

Theorem (R., Song and Sun (2017))

Let (Y_t) be the spine immigration defined above. Then $(Y_t)_{0 \le t \le T}$ is the $w_T(g)$ -transform of the Kuznetsov measure \mathbb{N}_{μ} .

When $g = \phi$, the above result degenerates to the classical spine decomposition theorem developed by Eckhoff, Kyprianou and Winkel (2015), Engländer and Kyprianou (2004), and Liu, R. and Song (2009).
References I

- S. Asmussen and H. Hering, *Branching processes*, Progress in Probability and Statistics, vol. 3, Birkhäuser Boston, Inc., Boston, MA, 1983.
- K. B. Athreya and P. R. Ney, *Branching processes*, Springer-Verlag, New York-Heidelberg, 1972, Die Grundlehren der mathematischen Wissenschaften, Band 196.
 - K. B. Athreya and P. R. Ney, *Functionals of critical multitype branching processes*, Ann. Probability **2** (1974), 339–343.
- K. A. Borovkov: A method for the proof of limit theorems for branching processes. Teor. Veroyatnost. i Primenen. 33 (1988), no. 1, 115–123; translation in Theory Probab. Appl. 33 (1988), no. 1, 105–113.
- M. Eckhoff, A. E. Kyprianou and M. Winkel, Spines, skeletons and the strong law of large numbers for superdiffusions, Ann. Probab. 43 (2015), no. 5, 2545–2610.

References II

- J. Engländer and A. E. Kyprianou, *Local extinction versus local exponential growth for spatial branching processes*, Ann. Probab. **32** (2004), no. 1A, 78–99.
- S. N. Evans and E. Perkins, Measure-valued Markov branching processes conditioned on nonextinction, Israel J. Math. 71 (1990), no. 3, 329–337.
- J. Geiger, *Elementary new proofs of classical limit theorems for Galton-Watson processes*, J. Appl. Probab. **36** (1999), no. 2, 301–309.
- M. I. Goldstein, F. M. Hoppe: Critical multitype branching processes with infinite variance. J. Math. Anal. Appl. 65 (1978), no. 3, 675–686.
- A. Joffe and F. Spitzer, On multitype branching processes with $\rho \leq 1$, J. Math. Anal. Appl. **19** (1967), 409–430.

References III

- A. N. Kolmogorov, *Zur lösung einer biologischen aufgabe*, Comm. Math. Mech. Chebyshev Univ. Tomsk **2** (1938), no. 1, 1–12.
- A. E. Kyprianou, J. C. Pardo: *Continuous-state branching processes and self-similarity.* J. Appl. Probab. 45 (2008), no. 4, 1140–1160.
- R.-L. Liu, Y.-X. Ren and R. Song, Llog L criterion for a class of superdiffusions, J. Appl. Probab. 46 (2009), no. 2, 479–496.
- R. Lyons, R. Pemantle and Y. Peres, Conceptual proofs of L log L criteria for mean behaviour of branching processes, Ann. Probab. 23 (1995), no. 3, 1125–1138.
- A. G. Pakes: *Critical Markov branching process limit theorems allowing infinite variance*. Adv. in Appl. Probab. **42** (2010), no. 2, 460–488.
- E. Powell, An invariance principle for branching diffusions in bounded domains, arXiv preprint arXiv:1512.00031 (2015).

Limit results under second moment conditions Limit results without second moment conditions Superprocesses with stable branching mechanism Reference

References IV

- Y.-X. Ren, R. Song and Z. Sun, A 2-spine decomposition of the critical Galton-Watson tree and a probabilistic proof of Yaglom's theorem, To appear in Electron. Commun. Probab. (2018) arXiv preprint arXiv:1706.07125.
- Y.-X. Ren, R. Song and Z. Sun, Spine decompositions and limit theorems for a class of critical superprocesses, arXiv preprint arXiv:1711.09188 (2017).
- Y.-X. Ren, R. Song and R. Zhang, *Limit theorems for some critical superprocesses*, Illinois J. Math. **59** (2015), no. 1, 235–276.
- Y.-X. Ren, T. Yang, G.-H. Zhao: *Conditional limit theorems for critical continuous-state branching processes*. Sci. China Math. **57** (2014), no. 12, 2577–2588.
- R. S. Slack: A branching process with mean one and possibly infinite variance. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1968), 139–145.

References V

- R. S. Slack: Further notes on branching processes with mean 1. Z.
 Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 31–38.
- V. A. Vatutin: Limit theorems for critical multitype Markov branching processes with infinite second moments. Mat. Sb. (N.S.) 103(145) (1977), no. 2, 253–264, 319.
- V. A. Vatutin and E. E. Dyakonova, The survival probability of a critical multitype Galton-Watson branching process, vol. 106, 2001, pp. 2752–2759.
- A. M. Yaglom, Certain limit theorems of the theory of branching random processes, Doklady Akad. Nauk SSSR (N.S.) 56 (1947), 795–798.
 - V. M. Zolotarev: More exact statements of several theorems in the theory of branching processes. Teor. Veroyatnost. i Primenen. 2 (1957), 256–266.

Limit results under second moment conditions	Limit results without second moment conditions	Superprocesses with stable branching mechanism Reference
0000000	0000	00000000000

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

E-mail: yxren@math.pku.edu.cn