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Branching process

Let L be an N0-valued random variable, EL = m, Var(L) = σ2.
Consider a branching particle system such that:

There is one particle at generation 0.
Each particle in the system independently produces a random
number of new particles, according to L.
The reproduction goes recursively.

Denote by Zn the number of particles at generation n, then we say
the process (Zn)n≥1 is a Galton-Watson process.
It is well known that

lim
n→∞

P(Zn > 0) = P(∀n s.t. Zn > 0) = 0,

iff m ≤ 1.
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Kolmogorov’s and Yaglom’s results

When the branching process (Zn, n ≥ 1) is critical, i.e. m = 1, and
Var(L) = σ2 <∞,

Kolmogorov (1938) proved that

nP(Zn > 0) −−−→
n→∞

2
σ2 (1)

Yaglom (1947) proved that

{Zn
n ; P(·|Zn > 0)

} law−−−→
n→∞

σ2

2 e, (2)

where e is an exponential random variable with mean 1.
We will call results like (1) Kolmogorov type results and results like
(2) Yaglom type results on more general branching processes.
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General critical branching processes (Analytic proofs)

For Kolmogorov type and Yaglom type results on...
continuous time critical branching processes, see Athreya and Ney
(1972)

discrete time multitype critical branching processes, see Athreya
and Ney (1972), and Joffe and Spitzer (1967);
continuous time multitype critical branching processes, see
Athreya and Ney (1974);
critical branching Markov processes, see Asmussen and Hering
(1983).
critical superprocesses, see Evans and Perkins (1990) and R., Song
and Zhang (2015).
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General critical branching processes (Probabilistic proofs)

Kolmogorov’s result and Yaglom’s result on branching process
see Lyons, Pemantle and Peres (1995),Geiger (1999), and R., Song
and Sun (2018).

Kolmogorov type result on multitype branching processes, see
Vatutin and Dyakonova (2001).
Kolmogorov type and Yaglom type results on branching
diffusions, see Powell (2015).
Kolmogorov type and Yaglom type results for a class of critical
superprocesses, see R., Song and Sun (2017).
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Superprocesses

Superprocesses are measura-valued Markov processes. To define it, we
need some preparation:

E : locally compact separable metric space with a measure m.
Mf : the collection of all the finite Borel measures on E .
(ξt): an E -valued Hunt process with transition semigroup (Pt).
Ψ : E × [0,∞)→ [0,∞) s.t.

Ψ(x , z) := −β(x)z + α(x)z2 +

∫
(0,∞)

(e−zy − 1 + zy)π(x , dy).

where
β ∈ bBE ;
α ∈ bpBE ;
π: a kernel from E to (0,∞) s.t. supx∈E

∫
(0,∞)

(y ∧ y 2)π(x , dy) <∞.
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Superprocesses

µ(f ) :=
∫

E f (x)µ(dx), f ∈ bBE , µ ∈Mf .

For any f ∈ bpBE , let uf : [0,∞)× E → [0,∞) be the unique
locally bounded positive solution to the equation

uf (t, x) +

∫ t

0
PsΨ(x , uf (t − s, x))ds = Pt f (x).

Definition (Superprocesses)
A Mf -valued Markov process {(Xt)t≥0; (Pµ)µ∈Mf } is called to be a
(ξ,Ψ)-superprocess if it satisfies that

Pµ[e−Xt (f )] = e−µ(uf (t,·)), t ≥ 0, µ ∈Mf , f ∈ bpBE .
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Criticality of Superprocesses

(St)t≥0: mean semigroup of superprocess (Xt) defined by

St f (x) := Pδx [Xt(f )] t ≥ 0, x ∈ E , f ∈ bBE .

Under some regularity assumption on the underlying process ξ, the
mean semigroup (St) and its adjoint semigroup (S∗t ) are both
strongly continuous semigroups of compact operators in L2(E ,m)
with generators denoted by L and L∗, respectively.
λ: the common maximum eigenvalue of L and L∗.
φ and φ∗: the eigenfunction of L and L∗ associated with the
eigenvalue λ, normalized s.t. 〈φ, φ〉m = 〈φ, φ∗〉m = 1.
It is known that (e−λtXt(φ))t≥0 is a nonnegative martingale.
When λ = 0 (> 0, < 0), we say the process is (super, sub) critical.
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Limit results on critical superprocesses

Now let us consider critical superprocess (Xt). Under some other
conditions, it was proved by R., Song and Zhang (2015), and R., Song
and Sun (2017) that

tPµ(Xt 6= 0) −−−→
t→∞

c−1
0 µ(φ),

and for a large class of functions f on E ,

{Xt(f )

t ; Pµ(·|Xt 6= 0)
} law−−−→

t→∞
c0〈φ∗, f 〉me.

Here, the constant c0 > 0 is independent of the choice of µ and f .



Limit results under second moment conditions Limit results without second moment conditions Superprocesses with stable branching mechanism Reference

Limit results on critical superprocesses

Now let us consider critical superprocess (Xt). Under some other
conditions, it was proved by R., Song and Zhang (2015), and R., Song
and Sun (2017) that

tPµ(Xt 6= 0) −−−→
t→∞

c−1
0 µ(φ),

and for a large class of functions f on E ,

{Xt(f )

t ; Pµ(·|Xt 6= 0)
} law−−−→

t→∞
c0〈φ∗, f 〉me.

Here, the constant c0 > 0 is independent of the choice of µ and f .



Limit results under second moment conditions Limit results without second moment conditions Superprocesses with stable branching mechanism Reference

Limit results on critical superprocesses

Now let us consider critical superprocess (Xt). Under some other
conditions, it was proved by R., Song and Zhang (2015), and R., Song
and Sun (2017) that

tPµ(Xt 6= 0) −−−→
t→∞

c−1
0 µ(φ),

and for a large class of functions f on E ,

{Xt(f )

t ; Pµ(·|Xt 6= 0)
} law−−−→

t→∞
c0〈φ∗, f 〉me.

Here, the constant c0 > 0 is independent of the choice of µ and f .



Limit results under second moment conditions Limit results without second moment conditions Superprocesses with stable branching mechanism Reference

Limit results without second moment conditions
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Galton-Watson process

Suppose (Zn)n≥1 is a Galton-Watson process. Var(L) = σ2 =∞
Zolotarev (1957) and Slack (1968): Assume that the generating
function f (s) of the offspring distribution is of the form

f (s) = s + (1− s)1+αl(1− s), s ≥ 0, (3)

where α ∈ (0, 1] and l is a function slowly varying at 0. Then

P(Zn > 0) = n−1/αL(n), (4)
where L is a function slowly varying at ∞, and{

P(Zn > 0)Zn; P(·|Zn > 0)
} law−−−→

n→∞
z(α), (5)

where z(α) is a positive random variable with Laplace transform

E [e−uz(α)

] = 1− (1 + u−α)−1/α, u ≥ 0. (6)
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Galton-Watson process

Slack (1972) considered the converse of this problem: In order for{
P(Zn > 0)Zn; P(·|Zn > 0)

}
to have a non-degenerate weak limit,

the generating function of the offspring distribution must be of the
form of (3) for some 0 < α ≤ 1.

For shorter and more unified approaches to these results, we refer
our readers to Borovkov (1989) and Pakes (2010).



Limit results under second moment conditions Limit results without second moment conditions Superprocesses with stable branching mechanism Reference

Galton-Watson process

Slack (1972) considered the converse of this problem: In order for{
P(Zn > 0)Zn; P(·|Zn > 0)

}
to have a non-degenerate weak limit,

the generating function of the offspring distribution must be of the
form of (3) for some 0 < α ≤ 1.
For shorter and more unified approaches to these results, we refer
our readers to Borovkov (1989) and Pakes (2010).



Limit results under second moment conditions Limit results without second moment conditions Superprocesses with stable branching mechanism Reference

More general critical branching processes

Goldstein and Hoppe (1978) considered the asymptotic behavior of
discrete time multitype critical Galton-Watson processes without
the 2nd moment condition.

Vatutin (1977) considered analogous results for the continuous
time multitype critical Galton-Watson processes.
Asmussen and Hering (1983) discussed similar questions for critical
branching Markov processes (Yt) in a general space E under some
ergodicity condition (the so-called condition (S) on the mean
semigroup of (Yt)).
It is natural to ask whether similar results are still valid for some
critical superprocesses without the second moment condition.
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Continuous-state branching processes(CSBPs)
Kyprianou and Pardo (2008) considered CSBPs {(Yt)t≥0; P} with
stable branching mechanism ψ(z) = czγ where c > 0 and γ ∈ (1, 2].
For all x > 0, with ct := (c(γ − 1)t)1/(γ−1),

{c−1
t Yt ; P(·|Yt > 0,Y0 = x)} law−−−→

t→∞
z(γ−1). (7)

R., Yang and Zhao (2014) studied CSBPs with branching mechanism

ψ(z) = cz2l(z), z ≥ 0, (8)

where c > 0, γ ∈ (1, 2] and l is a function slowly varying at 0. For
all x > 0, with λt := P1(Yt > 0),

{λtYt ; P(·|Yt > 0,Y0 = x)} law−−−→
t→∞

z(γ−1). (9)

Z. Li (2000) and A. Lambert (2007) studied the case that γ = 2.

Iyer, Leger and Pego (2015) considered the converse problem:
Suppose the branching mechanism ψ satisfies Grey’s condition. In
order for the left side of (9) to have a non-trivial weak limit for some
positive constants (λt)t≥0, one must have (8) for some 1 < γ ≤ 2.
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Superprocesses with stable branching mechanism
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Settings

E : locally compact separable metric space.
Mf : the collection of all the finite Borel measures on E .
Spatial motion (ξt): an E -valued Hunt process with transition
semigroup (Pt) and lifetime ζ.

Branching mechanism

ψ(x , z) = −β(x)z + κ(x)zγ(x), x ∈ E , z ≥ 0, (10)

where β ∈ Bb(E ), γ ∈ B+
b (E ), κ ∈ B+

b (E ) with 1 < γ(·) < 2,
γ0 := ess infm(dx) γ(x) > 1 and ess infm(dx) κ(x) > 0.
(Xt)t≥0: a superprocess with spatial motion ξ and branching
mechanism Ψ.
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Superprocesses

For any f ∈ bpBE , let uf : [0,∞)× E → [0,∞) be the unique
locally bounded positive solution to the equation

uf (t, x) +

∫ t

0
PsΨ(x , uf (t − s, x))ds = Pt f (x).

Definition (Superprocesses)
A Mf -valued Markov process {(Xt)t≥0; (Pµ)µ∈Mf } is called to be a
(ξ,Ψ)-superprocess if it satisfies that

Pµ[e−Xt (f )] = e−µ(uf (t,·)), t ≥ 0, µ ∈Mf , f ∈ bpBE .

If E = {x0} then Zt := Xt(1) is simply a CSBP.
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Assumptions

The mean behavior of superprocess can be described by the
Feynman-Kac transform of (Pt):

Pδx [Xt(f )] = Pβt f (x) := Πx [e
∫ t

0
β(ξr )dr f (ξt)1t<ζ ],

for x ∈ E , t ≥ 0, f ∈ bBE .

Assumption 1. (Compact operators)
There exist a σ-finite Borel measure m with full support on E and a
family of strictly positive, bounded continuous functions {pt(·, ·) : t > 0}
on E × E such that,

Pt f (x) =
∫

E pt(x , y)f (y)m(dy), t > 0, x ∈ E , f ∈ bBE ,∫
E pt(y , x)m(dy) ≤ 1, t > 0, x ∈ E ,∫
E
∫

E pt(x , y)2m(dx)m(dy) <∞, t > 0.
x 7→

∫
E pt(x , y)2m(dy) and x 7→

∫
E pt(y , x)2m(dy) are both

continuous on E .
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Assumptions

(Pβt )t≥0 and its disjoint semigroup (Pβ∗t )t≥0 are both strongly
continuous semigroups of compact operators in L2(E ,m).
L and L∗: the generators of (Pβt )t≥0 and (Pβ∗t )t≥0, respectively.
λ := sup Re(σ(L)) = sup Re(σ(L∗)), a common eigenvalue of
multiplicity 1.
φ and φ∗: the eigenfunction of L and L∗ associated with the
eigenvalue λ.
Normalize φ and φ∗ by 〈φ, φ〉m = 〈φ, φ∗〉m = 1.

Assumption 2. (Critical and Intrinsic Ultracontractive)
λ = 0. (Critical)
∀t > 0,∃ct > 0,∀x , y ∈ E , pβt (x , y) ≤ ctφ(x)φ∗(y).
(Intrinsic Ultracontractive)
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Main results

Theorem

Suppose that {(Xt)t≥0; (Pµ)µ∈Mf } is a (ξ, ψ)-superprocess satisfying
Assumptions 1-2. Then,
(1) For each t > 0 and x ∈ E, Pδx (‖Xt‖ = 0) > 0.

(2) For each µ ∈M1
E , Pµ(‖Xt‖ 6= 0) converges to 0 as t →∞ and is

regularly varying at infinity with index −(γ0 − 1)−1. Furthermore, if
m(x : γ(x) = γ0) > 0, then

lim
t→∞

ηtPµ(‖Xt‖ 6= 0) = µ(φ). (11)

Here, ηt :=
(
CX (γ0 − 1)t

) 1
γ0−1 , CX := 〈1γ(·)=γ0κφ

γ0 , φ∗〉m.
(3) Suppose m(x : γ(x) = γ0) > 0. Let f ∈ B+(E ) be such that
〈f , φ∗〉m > 0 and ‖φ−1f ‖∞ <∞. Then for each µ ∈M1

E ,

{η−1
t Xt(f ); Pµ(·|‖Xt‖ 6= 0)} law−−−→

t→∞
〈f , φ∗〉mz(γ0−1). (12)



Limit results under second moment conditions Limit results without second moment conditions Superprocesses with stable branching mechanism Reference

Main results

Theorem

Suppose that {(Xt)t≥0; (Pµ)µ∈Mf } is a (ξ, ψ)-superprocess satisfying
Assumptions 1-2. Then,
(1) For each t > 0 and x ∈ E, Pδx (‖Xt‖ = 0) > 0.
(2) For each µ ∈M1

E , Pµ(‖Xt‖ 6= 0) converges to 0 as t →∞ and is
regularly varying at infinity with index −(γ0 − 1)−1. Furthermore, if
m(x : γ(x) = γ0) > 0, then

lim
t→∞

ηtPµ(‖Xt‖ 6= 0) = µ(φ). (11)

Here, ηt :=
(
CX (γ0 − 1)t

) 1
γ0−1 , CX := 〈1γ(·)=γ0κφ

γ0 , φ∗〉m.

(3) Suppose m(x : γ(x) = γ0) > 0. Let f ∈ B+(E ) be such that
〈f , φ∗〉m > 0 and ‖φ−1f ‖∞ <∞. Then for each µ ∈M1

E ,

{η−1
t Xt(f ); Pµ(·|‖Xt‖ 6= 0)} law−−−→

t→∞
〈f , φ∗〉mz(γ0−1). (12)



Limit results under second moment conditions Limit results without second moment conditions Superprocesses with stable branching mechanism Reference

Main results

Theorem

Suppose that {(Xt)t≥0; (Pµ)µ∈Mf } is a (ξ, ψ)-superprocess satisfying
Assumptions 1-2. Then,
(1) For each t > 0 and x ∈ E, Pδx (‖Xt‖ = 0) > 0.
(2) For each µ ∈M1

E , Pµ(‖Xt‖ 6= 0) converges to 0 as t →∞ and is
regularly varying at infinity with index −(γ0 − 1)−1. Furthermore, if
m(x : γ(x) = γ0) > 0, then

lim
t→∞

ηtPµ(‖Xt‖ 6= 0) = µ(φ). (11)

Here, ηt :=
(
CX (γ0 − 1)t

) 1
γ0−1 , CX := 〈1γ(·)=γ0κφ

γ0 , φ∗〉m.
(3) Suppose m(x : γ(x) = γ0) > 0. Let f ∈ B+(E ) be such that
〈f , φ∗〉m > 0 and ‖φ−1f ‖∞ <∞. Then for each µ ∈M1

E ,

{η−1
t Xt(f ); Pµ(·|‖Xt‖ 6= 0)} law−−−→

t→∞
〈f , φ∗〉mz(γ0−1). (12)



Limit results under second moment conditions Limit results without second moment conditions Superprocesses with stable branching mechanism Reference

Size-biased transformation

Let (Ω,F ) be a measurable space with a σ-finite measure ν. For
any 0 ≤ F ∈ F such that ν(F ) ∈ (0,∞), we define the F -transform
of ν as the probability νF on (Ω,F ) such that

dνF =
F

ν(F )
dν. (13)

Suppose (Ω,F ,P) is a probability space.

Let X be a random variable defined on it. A random variable {Ẋ ; Ṗ}
is called a F -transform of X if {Ẋ ; Ṗ} law

= {X ;PF}.
Let {(Xt)t∈Γ;P} be a stochastic process. A process {(Ẋt)t∈Γ; Ṗ} is
called a F -transform of process (Xt) if
{(Ẋt)t∈Γ; Ṗ}

f .d.d.
= {(Xt)t∈Γ;PF}.
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= {X ;PF}.
Let {(Xt)t∈Γ;P} be a stochastic process. A process {(Ẋt)t∈Γ; Ṗ} is
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{(Ẋt)t∈Γ; Ṗ}
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Size-biased transform of Poisson random measures

N : a Poisson random measure on a measurable space (S,S ) with
intensity measure N.
F ∈ S +: 0 < N(F ) <∞ (, which implies that P(N (F )) <∞).

Theorem (R., Song and Sun (2017))

{N ; PN (F )} d
= {N + δs ; P ⊗ NF (ds)}.
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Superprocesses as PRMs

W: Skorokhod space of Mf -valued càdlèg paths.
(Nx )x∈E : Kuznetsov measure (N-measure, excursion measure) of
superprocess (Xt).
µ ∈Mf .

Nµ: a Poisson random measure on W with intensity measure∫
E
Nx [ · ]µ(dx).

Theorem (Superprocesses as PRMs, see Li (2011) Theorem 8.24)

{(Xt)t>0; Pµ}
d
=
(∫
W

wt Nµ(dw)
)

t>0
,

here (wt)t≥0 is the coordinate process.
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Idea

Superproecsses
Size-biased transform

Superprocess + a 
measura valued 

process

Poission random 
measure

Size-biased transform
Poission random 

measure + a random 
Atomic measure

Poissionian representation Functional representation
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Size-biased transforms of superprocesses

F : a non-negative measurable function on W s.t. Nµ[F ] ∈ (0,∞).

Theorem (R., Song and Sun (2017) [18])

{(Xt)t≥0; PN (F )
µ } d

= {(Xt + wt)t≥0; Pµ⊗NF
µ(dw)}.

While considering the transform of superprocesses, we only have to
characterize the corresponding transform of the N-measures.
We can characterize {(wt)t≥0;NF

µ(dw)} while

F (w) = wt(φ) using the 1-Spine Decomposition Theorem.
F (w) = wt(f ) using a generalized 1-Spine Decomposition Theorem.
F (w) = wt(φ)

2 using a 2-Spine Decomposition Theorem.
......
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1-spine decomposition, F (w) := wT (g)

Let g ∈ pBE s.t. ‖φ−1g‖∞ <∞. Let µ ∈Mf s.t µ(φ) <∞. Let
T > 0. We can constract a Mf -valued process {(Yt)0≤t≤T ; P̈(T ,g)

µ }
which is a realization of wT (g)-transform of Nx :

Let the spine process {ξ; Ṗ(T ,g)
x } be a

(
g(ξT )e

∫ T

0
β(ξs )ds)-transform

of {ξ;Px}.
Conditioned on ξ, let {n; Ṗ(T ,g)

x } be a Poisson random measure on
(0,T ]×W with mean measure

2α(ξs)ds × Nξs (dw) + ds ×
∫

(0,∞)

yPyδξs
(dw)π(ξs , dy).

The immigration along the spine {Y ; Ṗ(T ,g)
x } is an Mf -valued

process defined by

Yt(·) :=

∫
(0,t]×W

wt−s(·)n(ds, dw), t ≥ 0.
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x } is an Mf -valued

process defined by

Yt(·) :=

∫
(0,t]×W

wt−s(·)n(ds, dw), t ≥ 0.
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1-spine decomposition

Theorem (R., Song and Sun (2017) )
Let (Yt) be the spine immigration defined above. Then (Yt)0≤t≤T is the
wT (g)-transform of the Kuznetsov measure Nµ.

When g = φ, the above result degenerates to the classical spine
decomposition theorem developed by Eckhoff, Kyprianou and Winkel
(2015), Engländer and Kyprianou (2004), and Liu, R. and Song (2009).



Limit results under second moment conditions Limit results without second moment conditions Superprocesses with stable branching mechanism Reference

References I

S. Asmussen and H. Hering, Branching processes, Progress in
Probability and Statistics, vol. 3, Birkhäuser Boston, Inc., Boston,
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END

————————

Thank you!
————————
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